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Abstract
We show that there is no need to modify the Parisi replica symmetry breaking
ansatz, by working with R steps of breaking and solving exactly the discrete
stationarity equations generated by the standard ‘truncated Hamiltonian’ of
spin glass theory.

PACS numbers: 75.10.Nr, 05.50.+q

1. Introduction

In a quite recent work Aspelmeier and Moore [1] (hereafter referred to as AM) have considered
the sample-to-sample free energy fluctuations in finite dimensional spin glasses via the replica
method. To that effect they reconsider higher order terms in the replica number n and they
conclude that the Parisi symmetry breaking scheme [2] does not give the correct answer for
these higher order terms. Finally, they propose a modified symmetry breaking scheme that
resolves the problem.

What we set out to do here is as follows. Starting from the same truncated Hamiltonian
(AM.3) we solve exactly the discrete stationarity equations for R steps of replica symmetry
breaking, namely we obtain the R + 1 values of qαβ indexed by their overlap values
q0, q1, . . . , qR (together with qαα ≡ qR+1 = 0) and the R values of Parisi box sizes
p1, p2, . . . , pR together with the two fixed boundary values p0 = n and PR+1 = 1. As a
result, we find two families (a), (b) of solutions associated with two possible values of q0,
namely, letting g = w/(2y):

(a) q0 = 3n
2 g. In this case the corresponding free energy is identical to the Kondor [3] result

nf (a)(n) = nf − 9n6

640
wg3. (1.1)
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(b) q0 = 0. The free energy is now larger

nf (b)(n) = nf . (1.2)

Solution (b) is therefore the appropriate one to choose1, both solutions having a non-
negative Hessian spectrum when R → ∞. Among the family of solutions (b) with
q0 = 0 and free energy f (b), we will pick a reference solution with a set of values
qt , pt , t = 1, 2, . . . , R. All the other solutions will be shown elsewhere [5] to correspond to
a (discrete) reparametrization for large R. With that set of values, we proceed and compute
the contribution to fluctuations, with a result that matches for R → ∞ the Aspelmeier and
Moore ones [1]. We thereby establish that there is indeed no need to modify the Parisi replica
symmetry breaking scheme.

2. Solution of the stationarity equations

The stationarity equations are derived from the free energy functional

nf = −
R+1∑
t=0

{
(pt − pt+1)

[τ

2
q2

t +
y

12
q4

t

]
+

(
1

pt

− 1

pt−1

)
w

6
q̂3

t

}
(2.1)

where we have used the replica Fourier transform q̂ of q [6]2

q̂k =
R+1∑
t=k

pt (qt − qt−1) =
R∑

t=k

pt (qt − qt−1) − qR. (2.2)

Combining the stationarity equations, we obtain in the end

gpt = 1
2 (qt + qt−1) t = 1, 2, . . . , R

(qt − qt−1)
2 = (qt−1 − qt−2)

2 = · · · = (q1 − q0)
2 t = 1, 2, . . . , R.

(2.3)

Here we concentrate on the particular reference solution such that

qt − qt−1 = qt−1 − qt−2 = · · · = q1 − q0 = qR − q0

R
(2.4)

which leads to

qt = q0 + (qR − q0)
t

R
t = 0, 1, . . . , R

gpt = q0 + (qR − q0)
2t − 1

2R
t = 1, 2, . . . , R

(2.5)

together with qR+1 = 0, pR+1 = 1. Besides one has two more equations that determine q0

and qR:

E(qR) − y

6

(
qR − q0

R

)2

= 0 (2.6)

where E(qR) = τ − wqR + yq2
R , and which is valid for R > 0, and

q0

(
E(qR) + y

q0

3
(3gp0 − 2q0)

)
= 0 (2.7)

valid for all R. Note that if R = 0, qR ≡ q0, then (2.5) is a tautology and only (2.7) survives,
leading to the standard result wq = 2τ/(2 −p0) + O(τ 2). In fact, one is interested in the limit
of large R, whereby (2.6) yields the relationship

E(qR) = 0 (2.8)
1 Assuming that the proof given by Guerra [4] extends to small finite values of n.
2 In the continuum limit, the transform was first used by Mezard and Parisi, see [6].
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and from (2.7) either q0 = 0 or q0 = 3gp0/2 as, respectively, in the cases (b) and (a). Note
that qt is monotonic except for its last step (qR+1 = 0), and pt is monotonic except for its first
step (when p0 is kept fixed at a value n �= 0).

In the continuum limit, where t/R → x and qt → q(x), pt → p(x), we get for x in the
open interval (0, 1)

q(x) = gp(x) = qRx 0 < x < 1. (2.9)

We now proceed to get the fluctuation contribution as in (AM.5).

3. Fluctuations: the replicon sector

We have as in (AM.9)

nδfrep = V

2

∫
dDp

(2π)D
Irep(p) (3.1)

where

Irep(p) = n

R∑
r=0

R+1∑
k,l=r+1

µ(r; k, l) log(p2 + λ(r; k, l)). (3.2)

Here the replicon eigenvalue λ is

λ(r; k, l) = −2τ − wq̂k − wq̂l − 2yq2
r . (3.3)

The multiplicity µ(r; k, l) [7]3 is given by

µ(r; k, l) = 1
2 (pr − pr+1)µ(k)µ(l) (3.4)

where

µ(k) =
{

1
pk

− 1
pk−1

k > r + 1
1

pr+1
k = r + 1.

(3.5)

We note that p0 is absent from q̂, since even if the indices k, l were allowed to take the
value 0, it would appear in the vanishing combination p0q0. The p0 dependence can therefore
only arise from the multiplicity. Collecting the terms in p0 we get

Irep = n

2
p0

R+1∑
k,l=1

µ(k)µ(l) log(p2 + λ(0; k, l)) +
n

2

R∑
r=1

pr

R∑
k,l=r+1

log

(
p2 + λ(r; k, l)

p2 + λ(r − 1; k, l)

)
.

(3.6)

Using (2.5)–(2.7) and (3.1)–(3.5) we get

λ(r; k, l) = −2E(qR) + 2y
(qR

R

)2
(

1

2
(k2 + l2) − r2 − (k + l) + 1

)

= 2yq2
R

(
1

2

((
k

R

)2

+

(
l

R

)2
)

−
( r

R

)2
)

− 2y
(qR

R

)2
(

k + l − 5

6

)
. (3.7)

We note that the lowest (replicon) eigenvalue is given by

λ(r; r + 1, r + 1) = −y

3

(qR

R

)2
r = 0, 1, 2, . . . , R (3.8)

3 We keep here the same notation except for multiplicities in which we exhibit their factor n.



10958 C De Dominicis and P Di Francesco

hence we find an instability, except in the limit R → ∞ where this is suppressed. All other
eigenvalues are positive. We thus have in the Parisi limit R + 1 zero modes arising from the
negative eigenvalues (3.8). In that limit, one has

Irep = n

2

∫ 1

0
x dx∂x

{∫ 1

x

dk

k
∂k

∫ 1

x

dl

l
∂l log

(
p2 + yq2

R(k2 + l2 − 2x2)
)}

+
n2

2

∫ 1

0

dk

k
∂k

∫ 1

0

dl

l
∂l log

(
p2 + yq2

R(k2 + l2)
)

(3.9)

which coincides with (AM.12).

4. Fluctuations: the longitudinal-anomalous (LA) sector

We now have

nδfLA = V

2

∫
dDp

(2π)D
δILA(p)

δILA(p) = n

R+1∑
k=0

µ(k) log det �k(r, s) (4.1)

�k(r, s) = δKr
r,s − wqmin(r,s)

	
(r)
k

δ(k−1)
s

where δKr denotes the Kronecker delta, while we have

δ(k−1)
s ≡ p(k−1)

s − p
(k−1)
s+1

p(k−1)
s =

{
ps s � k − 1
2ps s < k − 1

	
(r)
k =

{
p2 + λ(r; r + 1, k) k � r + 1
p2 + λ(r; r + 1, r + 1) k < r + 1.

(4.2)

Expanding the determinant �k(r, s) yields

det �k(r, s) = 1 +
∞∑

m=1

(−w)m
∑

0�s1<s2<···<sm

m∏
i=1

(
qsi

− qsi−1

)δ(k−1)
si

	
(si )
k

(4.3)

where we have set s0 ≡ 0. In order to have p0 occurring in the determinant, i.e. in one
of the δ(k−1)

si
, we need si = 0 hence the only possible term is s1 = 0, but the prefactor

qs1 − qs0 ≡ qs1 = q0 vanishes and there is no p0 contribution from the log again. The only p0

contribution comes from the multiplicity nµ(k) which now cannot sustain an n2 contribution4.

5. Conclusion

With no contribution to fluctuations from the LA sector, we conclude that the full answer is
given by the contribution from the replicon sector as of (3.1) and (3.9), thus corroborating the
result of [1].

4 One may then ask what becomes of the term k = 0 which has a factor n/p0. It is actually given by
δI 0

LA = log det(�0(r, s)/�1(r, s)), but with δ
(0)
s = δ

(−1)
s − p0δ

Kr
s,0, whereas 	1(s) = 	0(s). Again, δI 0

LA reduces to

a contribution ∼p0δ
Kr
s,0 which vanishes with q0.
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6. Extension to Aspelmeier, Moore, Young calculation

In [8, 9] the authors give an analytic answer to a long-standing problem: computing the
interface free energy of the Ising spin glass. They show that (part of) the answer is obtained by
computing ZnZm and, in the associated free energy, leaving aside the terms in (n+m), (n+m)2

and keeping the terms in nm. From (3.6) we clearly see that, leaving aside an (n + m)2

contribution, one is left with a term

IP(p) ≡ Irep(p) = −nm
∑
k,l�1

µ(k)µ(l) log(p2 + λ(0; k, l)) (6.1)

replacing the quadratic term of (3.6) and associated with periodic boundary conditions. The
fluctuation contributions from the off-diagonal blocks of the Hessian (mixed sector, associated
with antiperiodic boundary conditions) are much easier to deal with since they are exactly
given by

IAP(p) = +nm

R+1∑
k,l=0

µ(k)µ(l) log(p2 + λ(0; k, l)), (6.2)

eigenvalues and multiplicities matching the R = 0 calculation presented earlier by the same
authors [8]. The LA sector is represented here, respectively, by k = l = 0 and k = 0, l � 1
or k � 1, l = 0, the replicon sector by k, l � 1 as in (6.1). But with q̂1 = q̂0 we now see that
the two contributions periodic (6.1) and antiperiodic (6.2) are formally identical but for their
sign. This result again matches that proposed in [9].
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